

Treatment Decision Exercises

Blending With No Treatment Exercise No.1

Blending With No Treatment Exercise No. 1

$$C_{As,B} = \left(\frac{\left[20 \text{ gpm} \cdot 0.020 \text{ mg/L}\right] + \left[100 \text{ gpm} \cdot 0.005 \text{ mg/L}\right]}{20 \text{ gpm} + 100 \text{ gpm}}\right)$$

Blending With No Treatment Exercise No. 2

Blending With No Treatment Exercise No. 2

$$Q_{S} = 200 gpm \left(\frac{0.018 \, mg/L - (1 - 0.2) \cdot 0.010 mg/L}{0.95 \cdot 0.018 mg/L} \right)$$

QB = 200 gpm - 0 x 116 gpmQB = 200 gpm

- RO flow = 152 gpmAds flow = 200 gpm
- Consider water loss
- Consider other water quality problems
- Operator skill
- Waste generated
- Capital cost
- O & M cost

Facility A – Conventional treatment plant (alum) coagulation, dualmedia filtration, backwash sludge lagoons, gravity storage Population – 17,000

Maximum Daily Flow – 5 MGD: Single source

WQ Parameter	Value	WQ Parameter	Value
As μg/L – Total	23	NO ₃ mg/L	0.3
As μg/L – V	23	NO ₂ mg/L	<0.01
pH su	7.8	TOC mg/L	4
SO ₄ mg/L	25	Si mg/L	20
Fe mg/L	1.2	CI mg/L	23
Mn mg/L	na	F mg/L	<0.0
TDS mg/L	na	Alk – CaCO ₃ mg/L	100

Misc: POTW discharge available, TBLLs imposed, landfill will not accept hazardous material

Tree 1 Non-Treatment Alternatives

Tree 2 Treatment Selection

Tree 2a Enhanced Coagulation/Filtration

Facility B – Ground water facility with chlorination and greensand filtration, gravity storage

Population – 650

Maximum Daily Flow – 0.2 MGD: 3 wells – 1 plant

WQ Parameter	Value	WQ Parameter	Value
As µg/L – Total	30	NO ₃ mg/L	4
As μg/L – V	20	NO ₂ mg/L	<1
pH su	8.1	TOC mg/L	na
SO ₄ mg/L	110	Si mg/L	10
Fe mg/L	0.4	CI mg/L	45
Mn mg/L	0.2	F mg/L	0.4
TDS mg/L	na	Alk – CaCO ₃ mg/L	175

Misc: POTW discharge available, TBLLs imposed, landfill will not accept hazardous material, filtration facility has excess capacity

Tree 1 Non-Treatment Alternatives

Tree 2 Treatment Selection

Tree 2c Iron & Manganese Filtration

Facility C – Ground water – Two wells discharging to a common header, one entry point, gravity storage Population – 600 Maximum Daily Flow – 0.2 MGD

Well #1 – Maximum capacity 200 gpm

WQ Parameter	Value	WQ Parameter	Value
As μg/L – Total	15	NO ₃ mg/L	6
As μg/L – V	5	NO ₂ mg/L	na
pH su	8	TOC mg/L	na
SO ₄ mg/L	45	Si mg/L	na
Fe mg/L	0.1	CI mg/L	na
Mn mg/L	<0.01	F mg/L	na
TDS mg/L	na	Alk – CaCO ₃ mg/L	na

Well #2 – Maximum capacity 100 gpm

WQ Parameter	Value	WQ Parameter	Value
As μg/L – Total	5	NO ₃ mg/L	na
As μg/L – V	4	NO ₂ mg/L	na
pH su	8	TOC mg/L	na
SO ₄ mg/L	45	Si mg/L	na
Fe mg/L	0.1	CI mg/L	na
Mn mg/L	<0.01	F mg/L	na
TDS mg/L	na	Alk – CaCO ₃ mg/	L na

Misc: POTW discharge available, TBLLs imposed, landfill will not accept hazardous material

Tree 1 Non-Treatment Alternatives

Facility D – Ground water facility with no treatment Three wells discharge to common header, gravity storage Flow – 0.5 MGD

WQ Parameter	Value	WQ Parameter	Value
As μg/L – Total	42	NO ₃ mg/L	3
As μg/L – V	12	NO ₂ mg/L	<1
pH su	8	TOC mg/L	<0.1
SO ₄ mg/L	115	Si mg/L	5
Fe mg/L	0.25	CI mg/L	30
Mn mg/L	<0.05	F mg/L	0.2
TDS mg/L	365	PO ₄ mg/L	0.04

Misc: POTW discharge available, TBLLs imposed, landfill will not accept hazardous material

Tree 1 Non-Treatment Alternatives

Tree 2 Treatment Selection

Tree 3 Selecting New Treatment

Tree 3b Sorption Processes

Facility E – Ground water facility with chlorination, hydro-pneumatic tanks

Population – 150

Maximum Daily Flow – 45,000 gal/day: 2 wells (each 30 gpm pumps 2 entry points – ½ mile apart

WQ Parameter	Value	WQ Parameter	Value
As μg/L – Total	42	NO ₃ mg/L	2
As μg/L – V	12	NO ₂ mg/L	<1.0
pH su	8	TOC mg/L	<0.1
SO ₄ mg/L	280	Si mg/L	
Fe mg/L	0.6	CI mg/L	36
Mn mg/L	0.04	F mg/L	
TDS mg/L	840	Alk – CaCO ₃ mg/L	188

Misc: POTW discharge NOT available, landfill will not accept hazardous material, water quality same for both wells

Tree 1 Non-Treatment Alternatives

Tree 2 Treatment Selection

Tree 3 Selecting New Treatment

Tree 3c Filtration & Membrane Processes

Facility F – Ground water facility with no treatment Private school – 300 students and staff – est. 25 gpcd Maximum Daily Flow – 20,000 gallons/day

WQ Parameter	Value	WQ Parameter	Value
As µg/L – Total	27	NO ₃ mg/L	2
As μg/L – V	8	NO ₂ mg/L	<1
pH su	7.4	TOC mg/L	<1
SO ₄ mg/L	120	Si mg/L	8
Fe mg/L	0.1	CI mg/L	27
Mn mg/L	<0.05	F mg/L	1
TDS mg/L	750	Alk – CaCO ₃ mg/L	220
PO₄ mg/L	<1		

Misc: POTW discharge NOT available, landfill will not accept hazardous material

Tree 1 Non-Treatment Alternatives

Tree 2 Treatment Selection

Tree 3 Selecting New Treatment

Tree 3b Sorption Processes

Waste Disposal

Impacts on Disposal Alternatives

- Concentration of contaminants in the waste stream
 - Non-Hazardous Waste
 - Hazardous Waste
 - Mixed Waste
- Federal, State, & Local Regulations
 - Disposal facility policies
- Type of residuals
 - Liquid
 - Solid

Disposal

Liquid Residuals

Brine, Backwash Water, Rinse Water, Acid Neutralization Water, Concentrate

Billo, Backwach Water, Miles Water, Mela Meatrailean Water, Germenhate				
Disposal Option	Waste Type	Applicable Authority	Key Considerations	
Discharge directly to surface waters	Non- hazardous	CWA	NPDES PermitReceiving body	
Discharge to a Publicly Owned Treatment Works (POTW)	Non- hazardous	CWA	•Meet TBLLs, POTW and state requirements	
Injection to a Class 1 UIC Well	Hazardous, Non- hazardous, & Mixed	SDWA/ UIC Regs.	Expensive, complex, and few wellsPermit required	
Injection to a Class V UIC Well	Non- hazardous	SDWA/ UIC Regs.	 Injection prohibited if it will endanger an underground source of drinking water 	

Disposal

Solid Residuals

Spent Resins, Spent Filter Media, Spent Membranes, Sludge

Disposal Option	Waste Type	Applicable Authority	Key Considerations
Municipal or industrial solid waste landfill	Non-hazardous	RCRA Subtitle D	No free liquidsAt discretion of landfill owner
Hazardous waste landfill	Hazardous & Non-hazardous	RCRA Subtitle C	 No free liquids Can accept hazardous waste from all generator classes
Low-level Radioactive Waste Landfill	TENORM and possibly Mixed Waste	AEA or Agreement State	Limited number of landfills in the nation

Intermediate Processing

- Evaporation ponds
- Settling basins
- Sludge drying beds
- Mechanical dewatering

Intermediate processing methods each creating its own residual stream

Intermediate Processes

Some intermediate streams may be classified as hazardous wastes creating a hazardous waste generator classification and a hazardous waste treatment facility!!!

RCRA Land Disposal

- Options:
 - Landfill, land application
- May require permit
- Must be non-hazardous or RCRA land disposal restrictions apply

Residuals Management under CWA

- Direct Discharge
- Discharge to a Publicly Owned Treatment Works (POTW)
- Land Application/Beneficial Reuse
 - Spray Irrigation

Direct Discharge - NPDES

POTW Discharge

Arsenic TBLLs

Albuquerque, New Mexico	51	μg/L
Anchorage, Alaska	3,700	μg/L
Boston, Mass. (Clinton Sewerage Area, MWRA)	1,000	μg/L
Boston, Mass. (Metropolitan Sewerage Area)	500	μg/L
El Paso, Texas	170	μg/L
King County (Seattle), Washington	4,000	μg/L
Lakeland, Florida	120	μg/L
Newark, New Jersey	150	μg/L
Orange County, California	2,000	μg/L
San Jose, California	1,000	μg/L

Land Application

- •503 Sludge Regs:
- •As concentration 41 mg/kg – designated clean
- •As concentration >41 mg/kg – limited to 41 kg/hectacre

SDWA-UIC Background

The Safe Drinking Water Act (SDWA)
Underground Injection Control (UIC)
program

- Established to protect the quality of drinking water in the U.S.
- Prohibits movement of injected fluids into underground sources of drinking water

Conventional WTP Residual Disposal

- Solid wastes
 - Solids from the sedimentation basin (blowdown)
 - Media from filters
 - Dewatered sludge's
- Liquid wastes
 - Backwash water

Disposal Example

Conventional WTP Residual Disposal

- Clarifier sludge ~0.5%
- Clarifier sludge arsenic concentration ~10 mg/L
- Sludge arsenic concentration ~2000 mg/kg dry weight
- Water treated is 1 MG Clarifier sludge flow is 2400 gallons
- Treatment reduces As from 30µg/L to 5µg/L
- Filter backwash water solids are negligible.

What Disposal Options are Available?

Clarifier Sludge Disposal?

Direct Discharge?

Discharge to the Sanitary Sewer?

Land Application – if so at what rate and how many acres?

Landfill? Any Conditions

Hazardous Waste Facility?

Conventional WTP Residual Disposal

	V G S
Disposal Method	Option Available?
Discharge to receiving stream	
Discharge to sanitary sewer	
Land Application	
Landfill	
Hazardous waste facility	

Conventional WTP Residual Disposal

Disposal Method	Option Available?	
Discharge to receiving stream	No	
Discharge to sanitary sewer	Not likely	
Land Application	Possible but has limits	
Landfill	Yes	
Hazardous waste facility	Only if needed	

Media Evaluation Exercise

Media A
EBCT = 5 minutes
Cost = \$200 / cu. Foot
Capacity = 35,000 BV
TCLP = pass
As Removal = 95%

Media B
EBCT = 5 minutes
Cost = \$300 / cu. Foot
Capacity = 50,000 BV
TCLP = pass
As Removal = 95%

Media Evaluation

- First, evaluate Media A:
- Total media cost = V (ft3) x \$200/ft3
- The cost per bed volume (BV) = (V x \$200) / (35,000 BV)
- = \$0.0057 per BV
- Next, evaluate Media B:
- Total media cost = V (ft3) x \$300/ft3
- The cost per bed volume (BV) = (V x \$300) / (50,000 BV)
- = \$0.0060 per BV
- The cost of Media A is slightly cheaper than Media B.